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INTRODUCTION 

The estimation problem in control or communication theory-

consists of estimating the value of a signal, or message pro

cess, in the presence of noise, or measurement error. The 

signal and the noise are assumed to be random processes. 

The optimum estimator in our cas'e is an operation on the 

combined signal and noise which yields an estimate of the sig

nal such that the mean-squared error is minimized over the 

period of time in question. The error is.defined as the dif

ference between the estimate of the signal and the signal 

itself. 

One solution to this problem was originated by Wiener (l6). 

The Wiener filter is designed to operate on an infinite amount 

of past data and is usually realized as a physically realiz

able network of lumped circuit elements. Wiener's original 

work has been extended and clarified by many later authors. 

A somewhat different approach to the solution of the 

estimation problem is that taken by Kalman (6, 7)- This fil

tering method was also derived independently by Battin (1). 

The Kalman filter is realized as a sequential method of 

operating on each reading or measurement as it is taken. This 

is done by means of a digital computer program. The Kalman 

filter is designed to operate on a finite amount of past data. 

Kalman's work has also been extended and restated, both by 

Kalman himself and by other authors. 



www.manaraa.com

2 

Both the Wiener and Kalman filters require the knowledge 

of the means and variances of the signal and noise in order 

for the optimal filter to be specified. In cases where they 

are not known, they must be either estimated by statistical 

methods, or guessed at, or an alternative filtering method 

must be used. 

Since the Kalman filter is a sequential technique capable 

of being easily modified as the statistics of the process 

change in time, it lends itself much more easily to the case 

where the statistics are not known and must be estimated from 

the available measurements. 

The Kalman filter is the optimal filter for Gaussian 

-- - random processes. In the case where the processes are not 

Gaussian, the Kalman filter is not the optimal filter, but 

only the optimal linear filter; and even then it is only 

optimal in the least squares sense. 

When the mean and variance are not known exactly and must 

be estimated, the filtering technique used is suboptimal when 

compared to the case where the process statistics are known; 

and therefore the mean-squared error in the estimate of the 

state is larger. 

If the statistical properties of the signal or noise are 

not known completely and must be estimated statistically, what 

is the actual variance of the state estimation error? How is 

this error variance improved by statistical estimation 
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techniques? It is desired to know this information both when 

the statistical parameter in question is time-stationary and 

when it is changing, either abruptly or slowly, with time. 

Certain estimation techniques will give better results when 

the parameter is time-stationary, and others will give better 

results when it is time-changing. This is especially the case 

when the filter is to be optimized over a finite time interval 

after a rapid change in the parameter. 

Information on the actual state estimation error is useful 

also because some solutions to the adaptive filtering problem, 

require more involved computations than others, but give great

er accuracy. Ultimately some compromise between accuracy and 

complexity will probably have to be made. 

In the problem considered here, it is assumed that the 

statistical properties of the signal, or message process, are 

known. The noise, or measurement error, is assumed to be 

uncorrelated, with zero mean and unknown variance. 
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REVIEW OF LITERATURE 

Much literature has been written on various aspects of 

Kalman filtering techniques, but very little on the particular 

problem considered here. 

Bucy and Pollin (2), in a I962 paper, analyze the steady-

state and transient behavior of an adaptive filter for one 

particular simple two-state system. Their analysis is done 

using the continuous form of the Kalman filter equations, 

rather than the discrete-time form. The discrete-time equa

tions are of more general use, because of their compatibility 

with digital computing techniques. Bucy and Follin include 

results obtained by a simulation of the system on an analog 

computer. 

The two main formulations of adaptive Kalman filters 

which apply directly to the discrete-time case are those of 

Shellenbarger (13) and Magill (9). Magill, by separating the 

possible Values of the unknown statistical parameter into a 

finite set of numbers and assigning a priori probabilities to 

each of these possibilities, arrives at an adaptive technique 

which is claimed to be optimal. This technique will work 

especially well in the case of a change in time of the param

eter from one discrete value to another, although it will 

involve more computations and assumes some a priori knowledge 

of the parameter Involved. 
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Shellenbarger has given solutions to the adaptive estima

tion problem when the measurement error covariance matrix, or 

the signal response covariance matrix, or both, are unknown. 

These solutions involve a maximum likelihood (10) or "maximum-

probability" type of statistical estimator for the unknown 

parameter. Since Shellenbarger's adaptive filter requires 

fewer computations than other known methods, it will be used 

as the basis for the work considered here. 

Some work has been published which deals with the effect 

of erroneous parameters in the signal and noise processes on 

the actual error in the estimation of the signal. Nishimura 

(11) has considered the effect of incorrect initial values of 

the estimation error covariance matrix, P, on the solutions of 

the variance equation. He has identified three quantities, 

P (calculated error Variance), (actual error variance), and 

P^ (variance of the error due to an optimal filter). He has 

derived difference equations for = P^ - P^, = P^ - P^, 

and E = P - P . These equations assume that the models of 
c o c o  

the signal and noise functions, with the exception of the 

initial error covariance matrix, are known. Nishimura also 

simulates an example system, which includes a phase-locked 

loop, and derives a relative "time of convergence" of the 

state estimation error variance to its final value. 

Heffes (5)s in a short paper, extends Nishimura's work to 

the case where there is an error in the noise model. He works 
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a simple example and gives graphical results for P^, P^, and 

Fagin (4) has also derived some equations similar to 

those of Heffes and Nishimura. 

Questions not treated by Nishimura, Heffes, or Fagin are 

those of obtaining additional information about the model and 

of how any additional information obtained would affect the 

actual estimation error. 

Swerling (l4) also mentions the existence of problems 

quite similar to these, and gives a few hints as to their 

possible solution. 
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REVIEW OF KALMAN FILTERING 

In order to identify and standardize the notation used 

in the following sections, a review of the Kalman filter equa

tions seems to be in order. Since they have been derived many 

times before, no attempt will be made to derive them here. A 

summary of some of the different methods of derivation is made 

by Lee (8). 

The signal and noise processes are defined as in Figure 1. 

The equations of the system are; 

X = Ax + Bu (1) 

2 = Mx + V (2) 

Since the output is being sampled at discrete instants 

of time t^, the equivalent difference equations of the system 

are ; 

x(k+l) = §(k+l;k) x(k) + £(k) (3) 

2(k) = Mx(k) + v(k), (4) 

where $ is the state transition matrix, 

g = / #(t,T) Bu(T)dT, (5) 

^k 

and M is the measurement matrix. 

Since the measurement of the state is contaminated by 

additive noise, one can not determine the exact value of the • 

state at a particular time, but can only estimate it. 

In the Kalman filter, the optimal estimate is given 
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Figure 1. Signal and noise processes as used in 
Kalman filter formulation 
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where x' = 'j? and (7) 

and 

P* . EL(2^-%%) (2'-%%)?] (8) 

is the covariance matrix of the error of the estimate of x due 

to all measurements up to and including y^_^. 

is the covariance matrix of the measurement 

error. 

is the covariance matrix of the error of the estimate 

of X by all measurements up to and including y., and is equal 

to E[(x^-xj^) (x^-x^)'^] . 

and P|^ are related as follows : 

Pg = + H (9) 

fk = p; - + \>'Vs 

= P£-- + \)^k- (10) 

T H = E(g^g^) is the covariance matrix of the response of 

the system due to the white-noise inputs between times t^ and 

^k+l. 
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PARAMETER ESTIMATION METHODS 

If nothing about the variance of the measurement errors 

is known, the most attractive way of attacking the estimation 

problem seems to be that of using the framework of the Kalman 

filter equations, as Shellenbarger has done. The variance is 

estimated from the measured data and inserted into the Kalman 

filter equations to form the weighting factor. 

Prom one viewpoint, there are basically two aspects of 

this problem. The first is that of fixing some sort of bound 

on the mean-squared error in the estimation of V, and the 

second is to see how this error in the estimation of V propa

gates and affects the actual mean-squared error in the estimate 

of the state variable. The latter aspect is the more impor

tant, because it is the estimate of the state that we are 

interested in. We are interested in the characteristics of 

the filter both in the case where the noise properties are 

time-stationary and in the case where they are time-changing. 

Two adaptive estimation techniques are given by Shellen

barger. They work well, but they do have some shortcomings, 

as will be described below. 

Maximum-Probability Estimation 

First we shall consider the "maximum-probability" esti

mate of Shellenbarger. This estimate is given by 

\ (11) 
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where is the estimate of the measurement error variance 

matrix at time t^, is the measurement vector at time t^, 

X. is the variance of the message or signal process at t^, and 

is the measurement matrix at t^. 

The above estimate, taken alone, gives an estimate of V 

based on one reading, A more accurate estimate is that based 

on several readings taken over a period of time and is given 

_ 1 ^ ^ by a simple average V = - E V., or by an exponentially 
i=l 

weighted average. In order to fix some bounds on the range of 

the estimate V and hence to have a basis for comparison of 

various estimation methods and to gain some insight into the 

behavior of the state estimation error, the properties of this 

estimate will be considered here. 

Since = y^y^ -

1 T 1 ^ T 
V = s - E .z, (12) 

1—X 1—X 

It is assumed that the X^'s are known. Xq is the covariance 

T 
matrix of the random process at time t^, and X^^^ = ®i^i®i ~ 

H.. The latter term in Equation 2 is then deterministic and 
1 

the first term is statistical. Since the mean of the process 

y is assumed to be zero, the first term of would be the 

maximum likelihood estimator for the variance of y if the 

individual readings y^ were independent of each other. The 

expression 

1 5 . 2 
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which applies to the one-dimensional case, would then have a 

chi-SQuare distribution with n degrees of freedom (9)» How

ever, since the signal process is correlated from one instant 

of time to the next, the measurements are not independent, but 

are correlated normally distributed random variables. The 

T —1 —1 
quadratic form of this distribution, y Y~ y, where Y is the 

inverse of the covariance matrix, is distributed as a chi-

sqûare variate with n degrees of freedom for n readings. 

1 ^ T 
Although the distribution of — Z y.y. is difficult to deter-

_ 1 % T mine, the variance of the random variable V = — E y.y. can 
1=1 

be determined and compared with the variance of an average 

of independent observations. 

Shellenbarger defines the variance of V as a matrix whose 

elements are the variances of the corresponding elements of 

the estimate of V. When the measurement is a scalar quantity, 

the Variance of V is a one-by-one matrix, or scalar. 

The Variance of the estimate "0 of a parameter 0 is defined 

as the expectation E(^ - 0)^. For an estimate based on a 

single measurement, Shellenbarger finds that the elements of 

the matrix which represents the variance of V are given by 

S[(V-V)*(V-V)],. = E[(yy^ - Yjefyy^ - Y)] 
1 J -i- J 

= (Y)2j + (ï)ii(ï)„. (13) 

Y is the variance of the process y = Mx + v and is equal to 

^i^i^i "^i* When y is a scalar quantity the variance of V 

2 
reduces to 2Y . 
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Let us now look at an estimate V formed from two readings. 

Since, in most of the systems of interest here, y is a scalar 

quantity, we will consider that case first. 

E[|(y^y^ + Ygyg) - Y]^ = + 72?%)^ ' 

+ ̂ 2^2) * 

= ELg^y^yi + 

+ ̂ 2^2'^ = Çt?!?!?!?! + <15) 

We know 

ECy^y^y^yi) = 3[E(y2)]2 = (16) 

where Y = E(y^), 

and also 

+ 2[E(y^yj)]2. (17) 

By using this information, we find that the right side of 

Equation l4 is equal to 

^{jY^ + ZY^ + ̂ Efy^yg)^ + jY^] _ Y^ 

= Y^ + [Efyiyg)]^. (18) 

Now Efy^yg) = E[(M^x^ + "^i^ Vg)] 

= E[ (Mi%iXg^+M^x^Tg+ MgZg?^ + v^Vg ) ] 

= (19) 

where ^^t^-t^) is the autocorrelation function of the process 

% evaluated between instants t^ and t^• 

So finally Equation l4 is equal to 
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(20) 

For our purposes here we will assume M is constant; that is 

= Mg = . . . = 

In the case where we have three correlated readings we 

may derive, in a manner similar to that above, 

E[ (V-V) (V-V)] = ̂  + 9-^—— + |M^$^(t^-t^) (21) 

In general, by following derivations similar to the above, 

one can find that the variance of an MP estimate of V based on 

n observations is 

~ [2nY^ + 4KM^$^(n-k)] (22) 
n k=l 

Maxlmum-Conditional-Probabillty Estimation 

The "maximum-conditional-probability" (MCP) estimator of 

Shellenbarger is given by 

(23) 

A 
where = estimate of measurement error covariance matrix at 

time t^ 

y^ = measurement vector at time t. 

P|(c) = calculated a priori covariance matrix of estima

tion error at time t^ 

= measurement matrix 

Again, as with the MP estimate, averages of the form 

1 * & 
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1 1 

or = (1-e 9) V + e ^ (25) 

may be formed for more accurate estimation. 

The mean of the estimate formed from a single measurement 

is as follows: 

E[V.] = E[(y.-y^)(y.-f^)T _ (26) 

= M[p4»(;&)]M^^ 4- ir. ( 2?") 

E[V] = [MP*(a)M^ + V - M?-"-(c)M^] 

= V - ME* (28) 

where E* = P*(o) - P*(a) 

In general; the average value of is equal to zero. 

The variance of the estimate formed by one measurement is 

given below for the case where Y is one-dimensional. 

E[(y-y')2 _ MP*(c)M^ - V]2 

= E[(y-y')4 _ 2(y-y')2(Mp(c)*M^ + V) + 

+ V)2]. (29) 

(30) 
Since ,E[(y-y')]^ = 3CE(y-y*)^]^ = 3(MP*(a)M^ + V)^, 

we have E[(V-V)2] = 3(MP*(a)M^ + V)^ - 2(MP*(a)M^ + V) 

(MP*(o)M^ + V) + (MP*(o)M^ 4- V)^ (31) 

Let us compare this with the variance of a single MP estimate 

of V, which is 2Y^ = 2(MXM^ + V)^. 
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Since (c) and P*(a) should both be less than X, this 

MCP estimate has a smaller variance, as is also shown by 

Shellenbarger (13). 

Let us now look at the variance of two averaged estimates, 

for the one-dimensional case. 

E[v-v]2 = E||C (y3_-y^)^ + (yg-y^)^ -

MP*(c)M^ - MP|(c)M^] - (32) 

The quantity inside the braces is equal to 

+ (yg-y^)^ - MP*(o)MT - MP*(o)M^j2 

= + 2(y^-y]_)^(y2-^p^ + 

- 2(y^-y^)2(MP*(o)M^^ - 2(y^-^^)2(MP*(o)M^^ 

- 2(y2-^^)2(MP*(o)M^^ - 2(y2-y^)2(MP*(o)M%J 

+ (MPj(c)M^)^ + 2(MPJ(c)M^) (MP|-(c)M^) + (MP|-(c)M^)^] 

- [(yi-yj)2 + (y2-y2)^ " MP;(c)M^ - MP*(o)MT]v + yZ. (33) 

The above expression contains the term 

We know that ECy^y^ygyg] = Efy^y^iEfygyg) + ̂ (y^ygjECygy^) 

+ E(y^y2)E(y^y2) (34) 
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Therefore 

= E(y^-y^)^E(y2-yp^ + 2E[ (y^-y^) (y^-yp] . (35) 

In order to evaluate these terms, we must digress still 

further and evaluate 

E[(yi-y{)(y2-y2^]. 

We know that 

• (y^-y?) = + v^ -

= M(x^-§x^_^) + v^ 

= M(x -§x ,) - Me(z, .-X ^ ) + V 
1 1—1 1—1 1—1 1 

= + v^ (36) 

Similarly (y^+i - y{+i) = Mg^ - SMe^ + v^^^ (37) 

SA = - &%_! (38) 

®n = 

= e; + +  v^) (39)  

therefore = «n-l®n-l " «n-l + \<"Sn-l " "'n' (^0) 

and 'yi+1 " ̂ i+l' == + Mës^_^ 

- M$b^(Mg^_^ - $Me^_^ + v^) + v^^^ (4l) 

E[(y^-yp (y^^3_ - 9^+^)] = $^M^P^_^(a) (l-b^M) 

+ M^$(l-b^M)H - tLV M§ (42) 
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By carrying the above derivation one step further, we 

E[(y3^-y?)(y^+2-yi+2" 

- $^tLM(l-b^+^M)V. 

In general, the relationship is 

ECCyn-y^Xy^+i^-y^+j,)] = 

(43) 

n+k-1 
n (1-b M) 
i=n 

n+k-1 
n (1-b.M) 
i=n 

H 

- é^b M 
n 

n+k-1 1 
n (l-b,M)| V. 

l=n+l 
(44) 

j 

From Equation 42, we have 

E[(yi-y{)(y2-y^)] = %fa(l-b^M)H + M2*3(l-b^M)PQ-9b^MV (4%I 

We now return to Equation 32 and evaluate the variance of the 

estimate V. When n=2 we have 

- 4 , A.\2,_ A.\2 , 
E[(3^V)(3'-V3 = Ej^{(yi-9{)^ + 2(yi-f{)^(y2-$%) + 

- 2(yi-^i)2(MP*(c)M^- 2(yi-yi)2(MP*(o)M^') 

- 2(y2-y2)2(MP^(o)MF) - 2(y2-y^)2(MP*(o)M^)+ (MP*(c)M^^2 '1 

+ 2(MP*(o)M^)(MP*(c)M^^ + (MP*(c)M^^2] _ [(y^_^^)2 

+ - MP*(o)MT _ MP*(o)MT]v + ̂ 2^ (46) 
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= ̂ ^3(MP|(a)M^ + V)^ + 2(MP£(a)M^ + V)(MP|(a)M^ + V) 

+ 4[M^é^(l-b^M)P^ + M^§(l-b^M)H - $b^MV]^ 

+ 3(MP|(a)M^ + V)^ - 2(MPJ(a)M^ + V)(MP*(c)M^) 

- 2(MP|(a)M^ + V)(MP|(c)M^) - 2 (MP|(a)M^ + V) (MP|(g)M^) 

- 2(MP|(a)M^ + V) (MP|-(c)M^) + (MP|(c)M^)^ 

+ 2(MPj(c)M^) (MP|(c)M^) + (MP|(c)M^)^ 

- [ (MP*(a)M^+V) + (MP|(a)M^ + V) - MP-|(c)M^ - MP|(c)M^]V 

+ V^. (4?) 

In order to gain more insight into the nature of the above 

expression, let us assume that P*(a) = P|(a) = P^(c) = P|(c) 

= P*. Then E[(V-V)(^-V)] = 

2(MP*M^ + V)^ - 2(MP*M^ + V)(MP*M^) + (MP*M^)^ 

+ [M^$^(l-b^M)P^ + M^$(l-b^M)H - §b^MV]^ + 

= (MP-5^M^+V)^ + [M^#^(l-b^M)P^+M^$(l-b^M)H - §b^MV]^ (48) 

This is comparable to Equation 20 for the Maximum-Probability 

Estimator. 

Let us look at the second term of Equation 48 when weight-

ing is optimal; that is, when b^ = ^ and M = 1.0, in the 

one-dimensional case. 

E[ (y^-y^Xyg-y^)] = *^(1 - prfr^^o + - p*^+ 



www.manaraa.com

20 

3 
4P*V _ ^ , -j?VH 4P*V 

- p-sc- + V - p# + V ̂  p-::- + V " P* + V 

P* = @P + H. 
1 o 

Substitution of this term into the above expression gives: 

9P*V &P*V _ 
p* + V " p-;;- 4. V - U. 

Therefore, in the optimal case, E[(y^-y£)(yg-yg^] = 0, 

and when the weighting is nearly optimal, the value of this 

term is small. The same relation can be shown to hold for 

By following derivations similar to those performed in 

the MP case, one can find that the variance of an MCP estimate 

of V based on three observations is 

4. v)2 + |{EC(y.^-y.;)(y^+i-yi^i)]]2 

+ I {E[ (y„-yA) (yn+2-%+2)^^ 

and in the general case 

(30) 

E[ (V-V) (V-V)] = -f2n(MP-::-M^ + V)^ 
n L 

+ 4k[E(y^-2^)(y^ - (51) 

where the terms of the summation are given by Equation 44. 

Similar derivations can be carried th'rough for the vari

ance of the exponentially weighted estimate. 
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Since + V) is less than (MXM^ + V) and since, when 

the system is near optimal, is less than 

$(At), the variance of an averaged MCP estimator is somewhat 

less than that of an averaged MP estimator. 

The MP estimation technique is more difficult to apply 

than the MCP technique because a larger number of estimates of 

V must be made in order to get a usable estimate. When V is 

relatively small and the variance of the signal process is 

large, the chances of obtaining a negative value for V, and 

hence an unusable estimate, are larger. For these reasons, 

the MCP estimate is used exclusively in the adaptive filter 

computer simulations. 

The result of both these estimation techniques is that 

the weighting factor is not optimum in the sense of a situa

tion where all the statistics are knovm. The calculated vari

ance of the estimation error (P-matrix) is neither the optimum 

Value nor the true value. The actual Value of the estimation 

error is inaccessible in a practical situation. However, for 

purposes of comparing different estimation methods, it can be 

assumed that the actual value of V is known. Of course, this 

Value is not used in the state estimation, and the weighting 

of the data is still suboptimal. 

The actual variance of the state estimation error is 

given by the relationships 

P^(k) = (I - bM) P* (k) (I - bM)^ + bVb^ (52) 
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Pg(k + 1) = + H, (53) 

where V is the actual Value of V, b is the weighting factor 

used (not necessarily optimum), and P*(0) is the P*(0) 

actually used, which is usually X , the variance of the signal 

process. 
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SIMULATIONS 

In order to obtain information on the behavior of the 

covariance of the estimation error, several systems were 

simulated on a digital computer and runs were made for various 

conditions. 

One-State System 

White noise with spectral amplitude 0.60k- is driving a 

system with a rational transfer function, as shown in Figure 

2. The output y is corrupted by additive uncorrelated mea

surement errors with unknown variance. The sampling interval 

is one second. The differential equation for the system is 

X = -0.2x + f(t) (5^) 

y = X + V (55) 

The state transition matrix is given by 

J =X-'t3l-A]-l (56) 

= e-0-2t 

The symbolX"^ stands for the inverse Laplace transformation. 

The variance of the system response is given by 

H = E[g^g^] = y y^e-0.2u e'"°'2^(0.60^)ô (u-v) dudv 
o o 

= 0.604 dv 

= 0.500 (57) 
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Figure 2. One-state system 
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Figure 3. Two-state system 
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$(At) = = e-0.2 = 

P* = a = 1.510 

(58) 

(59) 

The above values of H, #, and P* were used in the Kalman 

filter equations. V was assumed to be unknown, but estimable. 

Two-State Systems 

Several two-state systems were used. The first had a 

rational transfer function with two real roots, as shown in 

Figure 3» 

The equations for the system are as follows. 

-0.2 1 
( 6 0 )  

L. 

^2 
- -

y = [1 0] 

+ 
' 0 ' 

^2 ^1 

x. 

+ V (61) 

The quantities for the Kalman filter equations are calcu

lated as follows. 

S(t) = X~^Ls I - A]"^ 

-1 

1 1 
8+0.2 (8+0.2) (8+0.4; 

° 5+0.4 

(62) 

e-0.2t ^(e-0.2t_2-0.4t) 

-0.41 (63) 
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If At = 1 second: 

$(At) = 
0.819 0.745 

0 0.670 

h. 
t. 

11 • ^^^l&l^ 

1 1 
= / / f(t-v)f(t-u) du dv 

o o 

(64) 

(65) 

f(t-u)f(t^) = ip(t-V-t+u) 

= cp(u-v) = ô(u-v) for white noise. 

So H. = / (25)(e-0"2v_e-0'4V)2 = 0.500 

h 
22 

= etggg^] 

1 1 
~ f f d-u dv 

=  f  (e~^*^^)^ dv = 0.690 
o 

( 6 6 )  

(67) 

H, 
12 hgi = ecg^gg] = elggg^] 

1 1 
/ /e 
o o 

-0-''^(5)(e-°-2^-e-°-'^^)ô(u-Y) du dT 

= 5/ -0.4v, -0.2V _-0.4v (e -e"^'^v)av = 0.310 ( 6 8 )  

Therefore 

H 
0.500 0.310 

0.310 0.690 
(69) 
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Another two-state system which was tried was the one 

shown in Figure 4, in which two independent Markov processes 

are added together, with independent measurement noise added 

to the output. The quantities used in the Kalman filter for

mulation are given below. 

0.819 0 
(At=l) = 

0 0.670 

M = [1 1] 

(70) 

(71) 

= 1.510 og = 0.909 

H. e-0'2* ô(u-v) du dv 
" / / "1 

1 
= / cl( 

2/_-0.^v 

%2 ~ ̂ 21 " ° 

) dv = 0.500 

1 1 
H, 22 = / / (0-909) (e 

-0.4u\, -0.^v 
) ce 

(72) 

(73) 

)Ô(u-v) du dv (74) 
o o 

= 0.500 

More interesting results were obtained from systems whose 

transfer functions are rational, with imaginary roots,. 

Let the system in Figure 5 be driven by white noise with 

unity spectral amplitude. The measurement y is composed of 

the output of this system plus additive uncorrelated measure

ment error. The system is set up with phase variables chosen 
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n-
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/ 

1 ^2 
> s+0.4 

+ + 

f + + 
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V 

Figure 4. Two-state system with independent states 

White 
noise s +0.4S+0.20 

y 

Figure 5- Two-state system with imaginary roots 

White 
noise s"+0.2s+0.17 

>• y 1 

Figure 6. Less heavily damped two-state system 
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as state variables. The state variable description of the 

system is given below. 

0 1 
u(t) (75) ^1 

1 

^1 + 
0 

^^2 
1 

y = [1 0] 
xi 

+ V 
1 (76) 

The transition matrix $(t) is equal, as before, to the 

-1 inverse Laplace transform of [sI-A]~ . 

8+0.4 1 

[sI-A] -1 

SI +0.45+0.20 - 0 . 2 0  

(77) 

Therefore 

$ ( t ) = 
e"0*^t(cosO.4t+0.5slnO.4t) 2.5e"^"^^sin0.4t 

-0.5e"°*^^sin0.4t e~0 *^t(cosO.4t-0.5sin0.4t) 

(78) 

If we let At, the interval between measurements, equal one 

second, we have 

0.914 0.795 

$(at) = 

-0.159 0.595 

(79) 

As before, we have 

S(t) =  f  $(t,T) B U(T) dT 

Therefore g^(t) = / u(T) dr 

( 8 0 )  

(81) 
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and (t) = f  $22(^,7) u(T) dT. ( 8 2 )  

The elements of the H matrix are again given by the formula 

^i.i 
(83) 

1 1 
Hii = / / 6^25 e"°*^'^sin0.^u sin0.4v ô(u-v) du dv 

H, 22 

o o 

= 0.243 

elgggg] 

(84) 

1 1 
= / / 

o 0 

= 0.650 

—0.2u — 0.2v e e (cosO.4u-0.5sinO.5u) 

(cos0.4v-0.58in0.4v) ô(u-v) du dv 

(85) 

%2 

=  f '  /^e"°*^^(Gos0.4u-0.5sin0.4u)e"°'^'^(2.5sin0.4v) 
00 

Ô(u-v) du dv 

By the use of suitable trigonometric identities and integra

tion, we have 

and 

2l2 = 0-316 

^21 ^12 

( 8 6 )  

since H is symmetric. 

Therefore H = 
0.243 0.316 

0.316 0.650 

(87) 
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Another system which has been simulated is shown in 

Figure 6. This system is similar to the one in Figure 5j but 

is less heavily damped. The formulation of the system param

eters is given below. 

0 x, fol 
1 

+ 
) 1 

2 

u(t ) ( 8 8 )  

where [sI-A] -1 1 

(8+0.1) +  ( 0 . 1 6 0 )  

s+0.2 1 

-0.170 s 

(89) 

e"°*^^(cos0.^t+0.25sin0.4t 2.5e"°'^^sinO.^t 

-0.425e"°'^tsin0.4t r ° ( cos 0. i|-t-0.25 sino. il-t 

(90) 

1 
Si = f 2.5' 

0.lu_. sin0.4u u(t,u) du 
o • 

1 
8, = ,/ e^O'lu^^QgO.^u-O.25sin0.4u) u(t,u) du 

(91) 

(92) 
o 

%l ̂ 

1 1 

= 0.278 

= f f (2.5)^e"^'^^e"^'^^sin0.4usin0.4v ô(u-v) du dv 

(93) 

^12 ecg^g^] 

1 1 
= / / 

o o 
g-0.1u2-0.1v^2osq,4u-o,25sin0.4u)(2.5) 

(sinO.^v) ô(u-v) du dv 
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By using appropriate trigonometric identities and integrating 

we have 

and 

^12 = 0.392 

^21 ^12 

^22 ^'-^2^2^ 

1 1 
= / / e-o"2^6-0'2v(cos0.4u-0.2^8in0.4u) 
o o 

(cosO.^v-0.25sin0.^v) ô(u-v) du dv 

= 0.781 (96) 

Therefore H, for At = 1 second, is equal to 

"0.278 0.392 

0.392 0.781 

(94) 

(95) 

(97) 

and $(At) -
0.920 

-0.150 

0.880 

0.745 
(98) 

Simulations of Random Processes 

In order to implement different filtering techniques by 

means of a digital computer, we must simulate random variables 

which correspond to samples taken from this random process at 

points At seconds apart. The process x is defined as the out

put of a first-order system with a specified transfer function. 

This system is being driven by white noise of a specified 

spectral amplitude. If the process is sampled at discrete 

intervals, the values satisfy the difference equation 
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^k+l "  +  f  $(t,T)Bu(T) dT. (99) 

For a constant sampling interval At we have 

^k+1 g(at)x^ + g^, (100) 

is the response of the system to the white noise input 

between the times t^ and t^^^. Also, E[g^g^^^] = 0. There

fore the g^'s are random variables which are independent, 

with mean zero if the mean of the input is zero. They are 

normally distributed with covariance matrix H. 

In order to simulate values of x, for the one-dimensional 

case, one random number is chosen from a population with 

Variance X. For a second reading, this first value x^ is 

multiplied by §(At) and a second random variable g,, chosen 

from a population with variance H, is added to it. The same 

procedure is applied to Xg, and so on. 

For Values of uncorrelated measurement noise v, indepen

dent random variables are chosen from a population with the 

desired variance. The measurement y is then formed by the 

following operation: y = Mx + v. (101) 

The process of forming two-dimensional vector random 

variables with correlated elements is somewhat more involved. 

The vector g^ is composed of two random variables with vari

ances and covariances equal to the elements.of the matrix H. 

To form the vector g^, one must choose two independent random 
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variables from an available population and make a linear 

transformation on them. 

It is known (10) that if a p x 1 vector y is distributed 

as a p-variate normal with mean la and covariance V, and A is a 

q. X p matrix of rank q g p, then the q x 1 vector x* = Ay is a 

T q-variate normal with mean A|a and covariance matrix AVA . 

Let us assume we have available two sets of independent 

normally distributed random variables, y^ and y^, each with a 

desired variance. Some linear transformation T can be applied 

to the vector ̂  to give correlated random variables with 

T Variance TAT = H. The matrix H as used here is a symmetric 

matrix. We can diagonalize this matrix by finding the eigen

values and the corresponding eigenvectors. The transformation 

T in the above expression can be formed by these eigenvectors 

x^ and Xg as follows; 

T = 
^11 ^21 

(102) 

This T matrix can then be used as the linear transformation 

which operates on the vector of independent random variables 

to form random variables with variance H. These independent 

random variables themselves must have variances equal to the 

eigenvalues and of the H matrix. If, however, we have 

two independent normally distributed random variables with 

unity Variance, we must transform these variables by 
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1 

w = 
' 0 

(103) 

0 

in order to obtain random variables with the desired variance 

TWIW T = H. Therefore the total transformation on the inde

pendent random variables is the product of the transformations 

This same derivation can also be generalized to the case of 

a vector of n dependent random variables. 

The two-dimensional random variables for the simulations 

here were then formed according to the following relationship: 

Here is a two-vector of independent normally distributed 

random variables with unity variance and zero mean. 

In all the simulations made, the random variables were 

formed from random normal numbers with mean 0 and variance one 

selected from tables originally published by the Rand Corpora

tion (12) and reprinted in Dixon and Massey (3). 

A computer subroutine for generating normal random num

bers with a specified mean and variance was also available. 

This subroutine utilized a second subroutine which generated 

uniformly distributed random numbers. A normally distributed 

random number was formed by adding a finite number of 

•TmT 

TW = (104) 

x(k + 1) = g (At) %(k) + TW^r. (105) 



www.manaraa.com

36 

uniformly distributed numbers together, taking the mean, and 

scaling. These subroutines resulted in the use of somewhat 

more computer time than was needed to read in numbers selected 

from tables and store them. Therefore this method was not 

used. If a large amount of statistical data is needed, however, 

the use of these or similar subroutines is recommended in 

order to save the labor involved in selecting random numbers 

from tables and punching these onto cards. 

By using random numbers punched onto cards, it was pos

sible to make a large number of runs using the same set of 

data, but with modifications of the system parameters. If 

more than one set of data was desired for the same set of con

ditions, the cards could be reordered, or shuffled, for a 

different random process. 

It was desired'to make comparisons of different systems 

and adaptive techniques to obtain information on their rela

tive merits, rather than to obtain statistical data on the 

variance of each individual case which could be relied upon to 

within a certain confidence interval. Such data would be 

valuable, but would require a large number of computations for 

each case considered. 
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ADAPTIVE FILTERS WITH TIME-CHANGING MEASUREMENT ERROR 

In the cases considered here we will assume that all sta

tistical properties of the system are known except for the 

variance of the measurement error. It is noted that if this 

variance is known completely, even though it is time-changing, 

we have all the information necessary for the optimal weight

ing of estimates in the Kalman filter. 

If, at t = 0, no information about the variance V of the 

measurement error is known, the procedure used here combines 

a statistical estimation of the variance parameter with the 

Kalman filter equations to estimate the state at t = t^. 

If V is time-stationary, obviously the best way to esti

mate the state is to carry along all the estimates of V in an 

average. As t^ - t^ grows large, an unbiased estimate of V 

will converge to V; and P^, the actual Variance of the state 

estimate, will converge to the final value of P(optimal). If, 

however, V is apt to change with time, this method may not 

detect this change in V at all. 

If V changes with time, the parameter estimation techni

que must be such that the Kalman filter is adaptive to these 

changes in V. Two techniques are used here. One involves 

carrying along a finite number of estimates of V and forming 

an averaged estimate V. The second involves a form of expo

nential weighting of the past data. 
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The truncated average of V is formed as follows: 

_ 1 ^ A. 
v, = z v, (106) 
^ ^ 1=1 ^ 

The exponentially weighted average chosen is the simplest 

of the possible forms of the exponentially weighted averages 

which may be used: 

_ 1  _ 1  

Vi = e + (1 - e P)v^. (107) 

For purposes of comparison, p was chosen such that 
_1 

(1 - e was equal to l/n in the truncated estimate. The two 

estimates then seemed to be comparable in performance. 

In general, the truncated estimate seemed to converge 

faster and to be more adaptable to changes in V. The exponen

tial average seemed to give better estimates in the steady-

state case for a particular n. One particular advantage of 

the exponential average is that it is less susceptible to 

sudden irregularities in the noise which sometimes cause 

truncated estimates of V to be highly erratic and inaccurate. 

The _truncated average was modified by using different 

values of n; that is, by using a large or small amount of past 

data in forming an estimate for V. The exponentially weighted 

average was modified by changing the value of e P. 

As stated before, it is desired to estimate the state of 

a system with a message process whose statistical properties 

are known. The measurements of the output, however, are 
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contaminated by Independent measurement errors with zero mean 

and unknown variance. The variance of this measurement error 

will change rapidly at some unknown Instant of time. It may 

be desired to "design" a filter which will give the minimum 

mean squared estimation error over a finite time interval from 

the instant of this change in V to the present time t^. This 

design consists of choosing the optimum number of measurements 

to weight in estimating V. 

In the general case, a compromise must be made here. If 

V were time-stationary, the optimal filter would involve 

averagi-ng- all available estimates together to estimate V. 

However, after V makes a step change in value, there is an 

interval of time during which the mean of the averaged esti

mate of V is not equal to V. This interval is n seconds long 

and is described by n-l estimates V, where n is the number of 

estimates V used to form the average. This leads to the 

estimation-error variance during this transient Interval being 

larger than the steady-state value and larger yet than the 

optimal Value of P^. Therefore a compromise must be made 

between two extremes. A large value of n causes a small 

steady-state error variance, although values are similar for 

different large values of n. At the same time we have the 

disadvantages of a longer Interval of adaptation and a larger 

peak error variance during this interval. A small n leads to 

a relatively large and uneven steady-state error with the 
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advantages of a short interval of adaptation and usually a 

smaller error during this interval. 

We may also think of V as periodically switching between 

two Values, as shown in Figure 7- With the adaptive filters 

described here, for this situation will appear as in Figure 

8. 

In the periodic case, one possible problem is that of 

finding the value of n to be used to form V such that the 

mean squared error of the estimate over one cycle is a minimum. 

In order to obtain some idea of the optimal value of n 

for a certain length of time between switching, or a certain 

period, several computer simulations were made. These would 

enable one to determine average values of P, both during the 

time in which V is stationary, and during the transient 

period. The length of the transient period Is taken to be n 

time intervals, described by (n - 1) estimates. 

One-State System 

For an example .situation, V was postulated to switch from 

0.5 to 4.0 and back to 0.5* Four computer runs of 80 pieces 

of data each were made using values of n of 5» 8, 10, and 15. 

The averaged results of these runs are given in Figures 9 and 

10. Values of 7, 9, 12, 20, 25, and 30 were also used for n 

on some computer runs, as were different values of V. 

It would seem that larger numbers of n should be used for 

longer time periods, because with the large n the estimate is 
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Figure 8. P and P obtained with an adaptive filter 
applied to the situation shown in Figure 7 
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slow to adapt but has slightly lower and more even steady-

state error. 

Two-State Systems 

Several two-state systems were also simulated. Here, if 

one is interested in the total state estimation error vari

ance, he must consider the trace of the P-matrix as well as 

the individual elements. The trace is defined as the sum of 

the elements along the principal diagonal; it is + P^g 

in the two-state case. 

In the two-state systems considered here, a step change 

in V causes a large change in P^^ and a relatively small 

steady-state change in Pgg. However, pronounced transient 

characteristics are discernible in both P^^ and Pgg. In the 

two-state case, a larger number of estimates must be averaged 

together in order for the estimate of V to converge. This was 

especially noticeable in the system described in Figure 6, 

where the damping ratio was small. 

The behavior of the different systems which were simu

lated is best described by the graphs which are included and 

described in the following section. 

Description of Graphs 

Graphs of the results of some of the computer runs are 

presented here for illustrative purposes. Figures 9 through 

l4 pertain to the one-state system. 
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Figures 9 and 10 give the averaged results of four 

similar computer runs. In Figure 9 P for n equal to 5 and 8 

are compared with the variance of the error of the optimal 

estimate. Similar results are given in Figure 10 for n = 10 

and n = 15. V is equal to 0.5 for the first 30 state esti

mates, and it then makes a step change to 4.0 for the remain

ing 50 estimates. Note that the values of P for each n are 

markedly different during the time interval immediately after 

the change in V. The steady-state variance appears to be 

erratic for n = 5, but is not markedly different in value for 

n = 8, 10, and 15. 

Figures 11 and 1 2  compare a 5-mGasurement truncated aver

age and an equivalent exponentially weighted average. In 

Figure 11, V goes from 0.5 to 1.0 and back to 0.5. In Figure 

12, V goes from 0.5 to 4.0 and back to 0.5. Here it can be 

seen that the truncated estimator adapts slightly faster, but 

the exponentially averaged estimator is "smoother" in that 

peak Values of P are not as high when V is time-stationary. 

Figure 13 shows the convergence of P^ for the one-state 

system. The estimate of V is formed by averaging all avail

able estimates together up to time t^. Results are shown for 

V = 0.5 and V = 1.0. 

Figure l4 shows the results of truncated averaged esti

mators of V where n = 5 and n = 8. V goes from 0.5 to 1.0 

and back to 0.5. 
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Figures 15 through 25 apply to various two-state systems. 

Figure 15 shows P^^'for one run for the two-state system 

shown in Figure 3, for n equal to 8, 15, and 25. Notice that 

the estimator for n = 8 is much more erratic than the other 

two, when V is time-stationary. A "spike" also occurs here 

after the change in V. 

Figure l6 shows for the same run for the same system. 

Pgg is reasonably close to the optimum value, except for a 

period of approximately 5 seconds after the change in V. If 

the sum of the elements along the major diagonal of the covari-

ance matrix is used as a measure of the quality of the total 

state estimate, that estimate is especially poor during this 

time interval. 

Figure 17 shows P^^ for the two-state system shown in 

Figure 5. Again V is estimated by a truncated average with n 

equal to 8, 15, and 25. V switches from 0.5 to 4.0 at t = 30. 

Figure 18 shows P ̂  for the same situation. Note that 

the results obtained with this system, whose transfer function 

has imaginary roots, do not appear to be markedly different 

from those obtained with the system of Figures 15 and l6, 

whose transfer function has real roots. 

Figure 19 again shows P^^ for the two-state system of 

Figure 5. Again n is equal to 8, 15, and 25. V goes from 4.0 

to 0.5. 
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Figure 20 shows and for the same two-state system 

for V going from 0.5 to 1.0. The averaged estimate is formed 

exponentially. The estimate formed is approximately equiva

lent to 8 averaged estimates. 

Figure 21 shows and P^g when a truncated estimate, 

with n equal to 20, is used. 

Figures 22 through 25 pertain to the system of Figure 6. 

Figure 22 shows P^^ for a truncated and an exponentially 

weighted estimate when V goes from 0.5 to 4.0. 

Figure 23 shows the convergence of P^^ and P^^ when all 

available estimates are averaged together. 

Figure 24 shows the results of a truncated and an expo

nentially weighted estimate when V switches from 0.5 to 1.0. 

Note that the estimation-error Variance of this system is 

higher and more irregular than that obtained with the other 

two-state systems used. 

Figure 25 compares values of y for similar runs made with 

the systems of Figures 5 and 6. Note that the peak values of 

y are higher for the system of Figure 6. This would appear to 

help explain the fact that the adaptive filter used here is 

more difficult to apply to this system. 
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CONCLUSIONS 

It is concluded that, of the two possibilities considered, 

the MOP estimator is the most useful estimator of V. With a 

suitable choice of n it enables one to make state estimates 

with an error variance consistently within 20 per cent or less 

of those obtained when all statistical properties of the 

system are known. 

Some computer simulations of actual system situations are 

carried out. The data from these simulations illustrate some 

of the properties of the adaptive filter when the variance of 

the measurement error is time-changing. Simple one- and two-

state systems are used. However, the methods used here can 

be extended to the study of more complex systems. 

With two-state systems, more problems exist in using an 

adaptive filter. The state estimate is sometimes erratic, 

with high peaks in the estimation error. This seems to be 

especially evident when the damping ratio is small and the 

system transfer function has complex roots. However, it 

appears that satisfactory results can be achieved in some 

cases. 
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